Search results for "standard polynomial."

showing 2 items of 2 documents

Nambu structures and super-theorem of Amitsur-Levitzki

2004

In this thesis, we establish new polynomial identities in a non commutative combinatorial framework. In the first part, we present new Nambu-Lie structures by classifying all (n-1)-structures in \R^n and we give a method for defining all-order brackets in Lie algebras. We are able to quantify one of our structures, thanks to standard polynomials and even Clifford algebras. In the second part of our work, we generalize the notion of standard polynomials to graded algebras, and we prove an Amitsur-Levitzki type theorem for the Lie superalgebras \osp(1,2n) inspired by Kostant's cohomological interpretation of the classical theorem. We give super versions of properties and results needed in Kos…

[ MATH ] Mathematics [math]2n)Lie superalgebras osp(1théorème d'Amitsur-Levitzkitransgression.Crochet de Nambu-LieLie algebraAmitsur-Levitzki theoremstandard polynomial[MATH] Mathematics [math]Nambu-Lie bracketspolynôme standardquantificationsuperalgèbres de Lie osp(1algèbre de Clifford[MATH]Mathematics [math]Clifford algebratransgressionalgèbre de Lie
researchProduct

New applications of graded Lie algebras to Lie algebras, generalized Lie algebras and cohomology

2007

We give new applications of graded Lie algebras to: identities of standard polynomials, deformation theory of quadratic Lie algebras, cyclic cohomology of quadratic Lie algebras, $2k$-Lie algebras, generalized Poisson brackets and so on.

[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]2k-Lie algebrasstandard polynomial.standard polynomial[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]Deformation theoryGerstenhaber-Nijenhuis bracketFOS: Mathematicsgraded Lie algebrasquadratic Lie algebra[MATH.MATH-RT] Mathematics [math]/Representation Theory [math.RT]Representation Theory (math.RT)Gerstenhaber bracketcyclic cohomologysuper Poisson bracketsMathematics - Representation TheorySchouten bracket17B70 17B05 17B20 17B56 17B60 17B65
researchProduct